Abstract
A disadvantage of the SDP (semidefinite programming) relaxation method for quadratic and/or combinatorial optimization problems lies in its expensive computational cost. This paper proposes a SOCP (second-order-cone programming) relaxation method, which strengthens the lift-and-project LP (linear programming) relaxation method by adding convex quadratic valid inequalities for the positive semidefinite cone involved in the SDP relaxation. Numerical experiments show that our SOCP relaxation is a reasonable compromise between the effectiveness of the SDP relaxation and the low computational cost of the lift-and-project LP relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.