Abstract

The second-order CMC model for a detailed chemical mechanism is used to model a turbulent CH 4/H 2/N 2 jet diffusion flame. Second-order corrections are made to the three rate limiting steps of methane–air combustion, while first-order closure is employed for all the other steps. Elementary reaction steps have a wide range of timescales with only a few of them slow enough to interact with turbulent mixing. Those steps with relatively large timescales require higher-order correction to represent the effect of fluctuating scalar dissipation rates. Results show improved prediction of conditional mean temperature and mass fractions of OH and NO. Major species are not much influenced by second-order corrections except near the nozzle exit. A parametric study is performed to evaluate the effects of the variance parameter in log-normal scalar dissipation PDF and the constants for the dissipation term in conditional variance and covariance equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.