Abstract
In this paper, we introduce second-order composed radial derivatives of set-valued maps and establish some of its properties. By applying this second-order derivative, we obtain second-order sensitivity results for parametric multi-objective optimization problems under the Benson proper efficiency without assumptions of cone-convexity and Lipschitz continuity. Some of our results improve and derive the recent corresponding ones in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.