Abstract
This article completes our studies on the formal construction of asymptotic approximations for statistics based on a random number of observations. Second order Chebyshev–Edgeworth expansions of asymptotically normally or chi-squared distributed statistics from samples with negative binomial or Pareto-like distributed random sample sizes are obtained. The results can have applications for a wide spectrum of asymptotically normally or chi-square distributed statistics. Random, non-random, and mixed scaling factors for each of the studied statistics produce three different limit distributions. In addition to the expected normal or chi-squared distributions, Student’s t-, Laplace, Fisher, gamma, and weighted sums of generalized gamma distributions also occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.