Abstract
A new second-order two-scale (SOTS) asymptotic analysis method is presented for the heat conduction problems concerning composite materials with periodic configuration under the coordinate transformation. The heat conduction problems are solved on the transformed regular domain with quasi-periodic structure in the general curvilinear coordinate system. By the asymptotic expansion, the cell problems, effective material coefficients and homogenized heat conduction problems are obtained successively. The main characteristic of the approximate model is that each cell problem defined on the microscopic cell domain is associated with the macroscopic coordinate. The error estimation of the asymptotic analysis method is established on some regularity hypothesis. Some common coordinate transformations are discussed and the reduced SOTS solutions are presented. Especially by considering the general one-dimensional problem, the explicit expressions of the SOTS solutions are derived and stronger error estimation is presented. Finally, the corresponding finite element algorithms are presented and numerical results are analyzed. The numerical errors presented agree well with the theoretical prediction, which demonstrate the effectiveness of the second-order asymptotic analysis method. By the coordinate transformation, the asymptotic analysis method can be extended to more general domain with periodic microscopic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.