Abstract
This article develops confidence interval procedures for functions of simple, partial, and squared multiple correlation coefficients. It is assumed that the observed multivariate data represent a random sample from a distribution that possesses infinite moments, but there is no requirement that the distribution be normal. The coverage error of conventional one-sided large sample intervals decreases at rate 1√n as n increases, where n is an index of sample size. The coverage error of the proposed intervals decreases at rate 1/n as n increases. The results of a simulation study that evaluates the performance of the proposed intervals is reported and the intervals are illustrated on a real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.