Abstract

Air plastrons trapped on the surfaces of underwater superhydrophobic surfaces are critical for their function. Fibrillar morphologies offer a natural pathway, yet they are limited to a narrow range of liquid-surface systems and are vulnerable to pressure fluctuations that irreversibly destroy the air layer plastron. Inspired by the convexly grooved bases of water fern (Salvinia) leaves that support their fibrous outgrowths, we focus on the effect of such second-level grooved structures or microgrooves on the plastron restoration on immersed three-dimensional (3D)-printed hierarchical surfaces. Elliptical, interconnected microgrooves are fabricated with varying surface curvatures to study the effect of their morphology. Immersion experiments reveal that the convex groove curvature stabilizes a seed gas layer (SGL) that facilitates plastron restoration for all immersed hydrophobic surfaces. Theoretical calculations and atomic-scale computations reveal that the SGL storage capacity that sets the SGL robustness follows from the liquid menisci adaption to the groove geometry and pressure, from micro- to nanoscales, and it can be further tuned using separated grooves. Our study highlights groove convexity as a key morphological feature for the design of second-level architectures for underwater air plastron restoration on hierarchical superhydrophobic surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call