Abstract

Air plastrons trapped on the surfaces of underwater superhydrophobic surfaces are critical for their function. Fibrillar morphologies offer a natural pathway, yet they are limited to a narrow range of liquid-surface systems and are vulnerable to pressure fluctuations that irreversibly destroy the air layer plastron. Inspired by the convexly grooved bases of water fern (Salvinia) leaves that support their fibrous outgrowths, we focus on the effect of such second-level grooved structures or microgrooves on the plastron restoration on immersed three-dimensional (3D)-printed hierarchical surfaces. Elliptical, interconnected microgrooves are fabricated with varying surface curvatures to study the effect of their morphology. Immersion experiments reveal that the convex groove curvature stabilizes a seed gas layer (SGL) that facilitates plastron restoration for all immersed hydrophobic surfaces. Theoretical calculations and atomic-scale computations reveal that the SGL storage capacity that sets the SGL robustness follows from the liquid menisci adaption to the groove geometry and pressure, from micro- to nanoscales, and it can be further tuned using separated grooves. Our study highlights groove convexity as a key morphological feature for the design of second-level architectures for underwater air plastron restoration on hierarchical superhydrophobic surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.