Abstract
The aim of the present paper is to use the second-law approach for the thermodynamic analysis of the reheat combined Brayton/Rankine power cycle. Expressions involving the variables for specific power-output, thermal efficiency, exergy destruction in components of the combined cycle, second-law efficiency of each process of the gas-turbine cycle, and second-law efficiency of the steam power cycle have been derived. The standard approximation for air with constant properties is used for simplicity. The effects of pressure ratio, cycle temperature- ratio, number of reheats and cycle pressure-drop on the combined cycle performance parameters have been investigated. It is found that the exergy destruction in the combustion chamber represents over 50% of the total exergy destruction in the overall cycle. The combined cycle efficiency and its power output were maximized at an intermediate pressure-ratio, and increased sharply up to two reheat-stages and more slowly thereafter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.