Abstract

The management of refused derived fuel (RDF) is one of the most significant problems especially for developing countries. Technologies to convert biomass energy already exist as well. Gasification through a bubbling fluidized bed gasifier (BFBG) is discussed in this context. A BFBG is able to deal with wide variety of fuels due to the presence of inert bed material, in which bubbles mix turbulently under buoyancy force from a fluidizing agent like air or oxygen [1]. Under such violent bed conditions biomass waste particles are able to react fully to release volatiles as a result from high solids contact rate. Gases are released from the biomass particles and can then be used for producing electricity. In the literature there are several investigations on gasification processes from the thermodynamic point of view. Altafini and Mirandola [2] presented a coal gasification model by means of chemical equilibrium, minimizing the Gibbs free energy. The authors studied the effect of the ultimate analysis and the gasifying agents/fuel ratio on the equilibrium temperature (adiabatic case) in order to obtain the producer gas composition and the conversion efficiency. They concluded that the equilibrium model fits the real process well. Similar conclusions for biomass gasification are presented by the same authors [3], simulating the gasifying process in a downdraft gasifier, where the object of study was the effect of the biomass moisture content on the final gas composition assuming chemical equilibrium. Lapuerta et al. [4] predicted the product gas composition as a function of the fuel/ air ratio by means of an equilibrium model. A kinetic model was used to establish the freezing temperature, which is used for equilibrium calculations in combination with the adiabatic flame temperature. The biomass gasification process was modeled by Zainal et al. [5] based on thermodynamic equilibrium. They analysed the influence of the moisture content and reaction temperature on the product gas composition and its calorific value. Ruggiero and Manfrida [6] emphasized the potential of the equilibrium model considering the Gibbs free energy. This proceeding can be used under different operating conditions for predicting producer gas composition and the corresponding heating value. Many studies on the modeling of coal gasifers, in general, and coal gasification in bubbling fluidized beds, in particular, can be found in the literature. Nevertheless, thermodynamic modeling of the biomass gasification in bubbling fluidized beds has not been amply addressed. A few articles on the modeling of biomass bubbling fluidized bed gasifiers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call