Abstract
Second law analysis is recognised as an effective tool to determine the thermodynamic performance of many systems. In the present work, it is used for a steady–state multiport serpentine slab cross–flow Micro–Channel Heat Exchanger (MCHX) to analyse its thermodynamic performance. Micro–scale devices have been widely used due to advancements in micro–scale fabricating technologies. This type of heat exchanger has been known for its higher heat transfer coefficient and higher area per volume ratio. Conservation of energy and the increase in entropy principles were used to create a mathematical model that uses different parameters such as heat capacity rate ratio, fluids inlet temperatures ratio, effectiveness and pressure drop for obtaining the entropy generation. Results were obtained on the basis of the behaviour of the dimensionless entropy generation number with the key parameters. A good agreement between the predicted and the measured results was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.