Abstract
This paper presents a second law analysis for the optimal geometry of fin array by forced convection. The analytical analysis involves the achievement of a balance between the entropy generation due to heat transfer and entropy generation due to fluid friction. In the design of a thermal system, it is important to minimize thermal irreversibilities because the optimal geometry will be found when the entropy generation rate is minimized. In this paper, the entropy generation rate is discussed and optimum thickness for fin array is determined on the basis of entropy generation minimization subjected to the global constraint. In addition, the influence of cost parameters on the optimum thickness of fin array is also considered and presented in graphical form. It has been found that the increase in cross flow fluid velocity will enhance the heat transfer rate that will reduce the heat transfer irreversibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.