Abstract

A second-law analysis of a pressure-driven variable viscosity fluid flow through a channel with asymmetric convective cooling at the walls is investigated. Flow is assumed to be steady, laminar and fully-developed. The effect of heat generation due to viscous dissipation is included. The resulting equations and boundary conditions are solved numerically, by using an efficient numerical shooting technique with a fourth order Runge–Kutta algorithm. The effect of variable viscosity parameter, the Brinkman number and the Biot numbers on the velocity, temperature and entropy generation profiles are provided and discussed with appropriate physical explanations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.