Abstract

The second law of thermodynamics is used to analyze the potential for exergy conservation in solar collector systems. It is shown that the amount of useful energy (exergy) delivered by solar collector systems is affected by heat transfer irreversibilities occurring between the sun and the collector, between the collector and the ambient air, and inside the collector. Using as working examples an isothermal collector, a nonisothermal collector, and the design of the collector-user heat exchanger, the optimum operating conditions for minimum heat transfer irreversibility (maximum exergy delivery) are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.