Abstract
We present a full formalism for the calculation of the linear and second-order optical response for semiconductors and insulators. The expressions for the optical susceptibilities are derived within perturbation theory. As a starting point a brief background of the single and many particle Hamiltonians and operators is provided. As an example we report calculations of the linear and nonlinear optical properties of the mono-layer InP/GaP (110) superlattice. The features in the linear optical spectra are identified to be coming from various band combinations. The main features in the second-order optical spectra are analyzed in terms of resonances of peaks in linear optical spectra. With the help of the strain corrected effective-medium-model the interface selectivity of the second-order optical properties is highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.