Abstract

The characteristics of the second harmonic generations (SHGs) in homogeneous and inhomogeneous systems are investigated. We consider two kinds of structures: one is aperiodic optical superlattices (AOSs) with homogeneous linear susceptibility and the modulated second-order nonlinear susceptibility; the second is linear and nonlinear susceptibilities both the system with inhomogeneous. We derive a general solution of SHG for the AOS with finite lateral width and of SHG in considering the depletion of the pump light power. We carry out the design of AOSs by using simulation annealing (SA) algorithm and show that the constructed AOSs can implement multiple wavelength SHGs with identical effective nonlinear coefficient at the preassigned wavelengths of incident light. We observe great enhancement of SHGs in the one-dimensional photonic crystals (PCs) with defects consisting of multiple photonic quantum wells made of nonlinear material when the frequency of fundamental wave aims at one of the defect states. We also propose an effective design approach of aperiodically stacked layers of nonlinear material and air in terms of the SA method. The constructed structure can achieve multiple-wavelength SHGs at the preas-signed wavelengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.