Abstract

We synthesized the barium/strontium solid solution sequence Ba6−xSrx[Ag(4−y)Sn(y/4)](SnS4)4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group I4̅3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS4 and AgS4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr–S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0–3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe2 from 600 to 1000nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.