Abstract

Second-order optical nonlinearities of zinc oxide (ZnO) nanorods grown on quartz substrate were determined by optical second harmonic generation (SHG) measurements at 1064 nm fundamental wavelength. The average length of the zinc oxide nanorods ranged from 50 nm to 700 nm. By employing the Maker fringes technique, we obtained the second-order nonlinear optical coefficients d333 and d311. Their magnitudes and ratio are compared with that of zinc oxide thin film fabricated by different techniques. We see variations of the second-order nonlinear optical coefficients with respect to the aspect ratio of the nanorods. This is attributed to local field effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.