Abstract

It is demonstrated that as-grown e-beam deposited SiOx thin films on fused silica substrates show a second-order nonlinear response that is dependent on film thickness. Using a Maker fringes method the effective nonlinear coefficient for a SiO thin film is estimated to be comparable to that of crystalline quartz. Variation of process parameters has been used to investigate the origin of the nonlinear response. The second-harmonic signal is very sensitive to annealing of the film and can be totally removed by annealing at a few hundred degrees. It is also demonstrated that a retarding grid that traps charged particles between the crucible and the sample reduces the nonlinear signal from a SiO thin film significantly. It is suggested that oriented dipoles arise during deposition due to a negatively charged film from oxygen ions, thus, resulting in a non-centrosymmetric film. Finally, using e-beam lithography, well-defined nonlinear 2D structures can be synthesized, thus opening the door to a new and practical way to create nonlinear structures for planar waveguide technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.