Abstract

We demonstrate the generation of second-harmonic radiation in transmission through periodic and disordered arrays of sub-wavelength metallic apertures. For circular apertures in a square lattice, the second-harmonic signal peaks at incidence angles corresponding to enhanced transmission of the fundamental beam of 800 nm wavelength except at small incidence angles where the local symmetry minimizes the effective second-order nonlinear susceptibility of the apertures. Even though the linear transmission of the fundamental beam can be more than five times greater through the periodic array as compared to a disordered array, the strength of the second harmonic from the disordered array is greater at large incidence angles. By breaking the local symmetry through the use of apertures of non-centrosymmetric shape, the second-harmonic output occurs at fundamental transmission resonances at small incidence angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call