Abstract

AbstractSecond-harmonic generation by an obliquely incident s-polarized laser from an underdense plasma in the presence of a magnetic field has been investigated analytically. An expression for the relativistic factor γ has been obtained in the presence of magnetic field. The efficiency of second-harmonic radiation η has been obtained as a function of angle of incidence θ, normalized electric field amplitude of laser beam a0, normalized electron density ${\rm \omega} _{\rm p}^2 /{{\rm \omega} ^2}$, and magnetic field b. It is observed that γ increases with b. In turn, the conversion efficiency decreases with an increase in b. It is seen that the conversion efficiency is affected by the magnetic field due to the modified relativistic factor. In the absence of magnetic field, η increases with a0 and θ. However, in the presence of magnetic field, the conversion efficiency starts decreasing as the magnetic field is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call