Abstract

Electrochemical second harmonic generation (ESHG) has been applied as a probe of the slow dynamics in the electric double layer (EDL) at the ionic liquid (IL)/Au interface. When the electrode potential was stepped, the SHG signal from the interface was relaxed on the time scale longer than tens of seconds, which is distinctively slower than the RC time constant of the cell. This ultraslow relaxation in ESHG was quantitatively analyzed and discussed for several ILs, revealing that the ultraslow relaxation itself is a common phenomenon for the EDL in the ILs studied but the asymmetry of the time constants to the potential-step directions depends on the IL ions, which is likely to reflect the structure ordering of the interfacial ionic layer in the EDL depending on both ILs and the potential. The EDL structure in equilibrium has also been investigated via SHG measurements with a potential scan at a sufficiently slow rate; the potential dependence of the SHG signal was found to deviate from a simple parabolic one, reflecting the camel-shaped static differential capacitance for the EDL in ILs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.