Abstract

BackgroundTenocytes have been implicated in the development of tendinosis, a chronic condition commonly seen in musculoskeletal overuse syndromes. However, the relation between abnormal tenocyte morphology and early changes in the fibrillar collagen matrix has not been closely examined in vivo. Second harmonic generation (SHG) microscopy is a recently developed technique which allows examination of fibrillar collagen structures with a high degree of specificity and resolution. The goal of this study was to examine the potential utility of SHG and multiphoton excitation fluorescence (MPEF) microscopy in understanding the relation between tenocytes and their surrounding collagenous matrix in early tendon overuse lesions.MethodsHistological preparations of tendon were prepared from adult male Sprague-Dawley rats subjected to an Achilles tendon loading protocol for 12 weeks (Rat-A-PED), or from sedentary age-matched cage controls. Second harmonic generation and multiphoton excitation fluorescence were performed simultaneously on these tissue sections in at least three different areas.ResultsSHG microscopy revealed an association between abnormal tenocyte morphology and morphological changes in the fibrillar collagen matrix of mechanically loaded Achilles tendons. Collagen density and organization was significantly reduced in focal micro-regions of mechanically loaded tendons. These pathological changes occurred specifically in association with altered tenocyte morphology. Normal tendons displayed a regular distribution of fibre bundles, and the average size of these bundles as determined by Gaussian analysis was 0.47 μm ± 0.02. In comparison, fibre bundle measures from tendon regions in the vicinity of abnormal tenocytes could not be quantified due to a reduction in their regularity of distribution and orientation.ConclusionsSHG microscopy allowed high resolution detection of focal tendon abnormalities affecting the fibrillar collagen matrix. With ongoing repetitive loading, these tenocyte-associated focal collagen defects could predispose to the progression of overuse pathology.

Highlights

  • Tenocytes have been implicated in the development of tendinosis, a chronic condition commonly seen in musculoskeletal overuse syndromes

  • We hypothesized that collagen density and fibrillar organization would be significantly reduced in highly localized areas associated with abnormal tenocyte morphology

  • Second harmonic generation (SHG) and multiphoton excitation fluorescence (MPEF) images of normal rat Achilles tendon In order to determine the microregional properties of collagen surrounding abnormal tenocytes in mechanically loaded tendon, we assessed standard histological preparations using multiphoton and second harmonic generation (SHG) microscopy

Read more

Summary

Introduction

Tenocytes have been implicated in the development of tendinosis, a chronic condition commonly seen in musculoskeletal overuse syndromes. Second harmonic generation (SHG) microscopy is a recently developed technique which allows examination of fibrillar collagen structures with a high degree of specificity and resolution. The goal of this study was to examine the potential utility of SHG and multiphoton excitation fluorescence (MPEF) microscopy in understanding the relation between tenocytes and their surrounding collagenous matrix in early tendon overuse lesions. Multiphoton and associated microscopy methods have been widely used for imaging dynamic interactions in cells and tissues with submicron resolution [1,2,3] Among these methods, the second harmonic generation (SHG) imaging method shares many of the features of multi photon excitation fluorescence (MPEF) microscopy, including identical equipment requirements and intrinsic capability of generating 3D images. SHG provides the potential to investigate precise spatial relations between collagen organization and underlying tenocyte biology

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call