Abstract

The continuum theory of ideal fibre-reinforced fluids, namely incompressible viscous fluids exhibiting some direction of inextensibility is extended to account for the fibre bending stiffness; namely a property that prevents discontinuity of the fibre slope under normal loading conditions. The principal kinematics of this new theoretical development is consistent with three-dimensional forming flows of fibre–resin systems though, for simplicity, formulation of relevant constitutive equations is confined within the framework of relevant plane flows. The theory adopts the macroscopic view that the resin matrix behaves as a viscous fluid but the resin and fibres form a homogeneous composite material. Consideration of the fibre bending resistance requires the inclusion of couple-stress and, hence, non-symmetric stress. The outlined theoretical developments are therefore relevant to polar-media behaviour; in this context, the anisotropic viscous fluids of interest become part of the material class of the so-called polar fluids. For plane flows of this type of fluids, a manner is also outlined in which the non-symmetric stress distributions sought can be determined by solving two simultaneous, first-order linear differential equations. Moreover, a relevant stress-resultants technique is adopted and extended appropriately to make possible complete determination of the kinematics dictating the creeping forming plane flow of the composite fluids of interest. Details of the mechanisms that capture fibre bending resistance are revealed and illustrated through a relatively simple example application. This considers and resolves the forming flow process of an ideal fibre-reinforced composite, moulded into a sharp corner under the action of an external line force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.