Abstract

AbstractAn iron(II) phthalocyanine (FePc) complex solubilized by decylamine (DA) and benzylamine (BA) is incorporated into a nanoparticulate metal oxide matrix to develop optical sensor films sensitive to NO2 and CO. Eleven amine solvents have been tested as N‐donor ligands that permit ligand exchange with the gas molecules. We have systematically investigated the suitability of different N‐donor ligands, studied the thermal stability of the NO2‐ and CO‐sensing films at 4, 25, 60, and 80 °C by photometry, and corroborated our findings by using NMR experiments. A satisfactory thermal stability of the films has not been obtained for chemically unmodified nanoparticulate metal oxide matrices. We have therefore developed a second generation of nanostructured metal oxide supports that show increased thermal stability and adequate sensitivity to NO2 and CO. These novel nanostructured matrices have been chemically modified using amines, alumina oligomers, and/or anti‐gas‐fading agents. These components have been integrated into the metal oxide matrices to avoid degradation of the optical films and to preserve their sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.