Abstract

Prostate cancer (Pca) is the most commonly diagnosed cancer affecting men in France. Before the age of 75 years old, 1 in 8 French men will have Pca. Androgen deprivation therapies (ADT) remain the standard of care. Such therapies induce significant bone loss. The bone-remodelling cycle depends on the androgen synthesis signalling pathways. Furthermore, age-specific hormonal decline plays a key role in the decrease in bone mass. As a result, the older the patients, the more likely they are to have osteoporosis if they are treated with hormone therapy. Their risk of osteoporotic fracture has an impact on their quality of life and their capacity of independent living. In recent years, newer hormone therapies (acetate abiraterone, enzalutamide, apalutamide and darolutamide) have proved efficient in metastatic castration-resistant Pca (mCRPC) patients as well as in hormone naïve patients, and actually in nonmetastatic diagnosis. The combination of these treatments with ADT highly inhibit androgen production pathways. They are prescribed to aged patients undergoing bone density loss after first-generation antiandrogen treatment. Specific recommendations for bone health management in Pca patients are currently lacking. To date, bone mineral density in patients treated with second-generation hormone therapy has never been assessed in a prospective study. This review aims at reviewing what is known about the impact of second-generation hormonotherapy on bone microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call