Abstract

Second derivative spectrophotometry was applied to determine the binding constant (K) between codeine phosphate (COD) and bovine serum albumin (BSA) at simulated physiological conditions (37.00 °C and pH = 7.4). The second derivative spectra of COD in buffer solutions containing various amounts of BSA showed derivative isosbestic points. The residual background signals derived from incomplete suppression of BSA signals can be entirely eliminated in the second derivative spectra indicating that BSA has spectrophotometrically one kind of binding site for COD. The fractions of COD bound to BSA were calculated from the derivative intensity differences (ΔD values) of COD before and after the addition of BSA. Scatchard plot calculation suggested that the binding of COD to BSA can be explained by a partition-like non-specific binding model. The binding constant (K) was calculated from ΔD values according to the non-specific binding model by a nonlinear least-squares method. K values were almost constant for all of the COD concentrations studied with good reproducibility. The fractions predicted by the K values were in good agreement with the observed values. The results indicate the usefulness of the derivative method in drug–albumin binding studies without the need for prior separation procedures which may disturb the equilibrium states of the samples solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.