Abstract

Rhizopus oryzae lipase immobilised onto differently functionalised polymethacrylate (Purolite®) and magnetite superparamagnetic supports was assessed as a catalyst for biodiesel production with pomace oil. The presence of surface hydrocarbon chains increased the operational stability of the biocatalysts supported on Purolite® and superparamagnetic particles up to 9 and 2 times, respectively. By contrast, the presence of functional groups had no effect on the initial transesterification rate, which was twice higher with the lipase immobilised onto Purolite®. Also, functionalising Purolite® with epoxide and octadecyl groups led to the highest biodiesel and volumetric productivity. This biocatalyst with other substrates including makauba, jatropha, waste cooking oil, and microbial oil, led to similar initial reaction rates. However, simply raising substrate acidity from 0.5 to 2% increased the operational stability of the biocatalysts 15 times. A synergistic effect between acyl-acceptor concentration and substrate acidity was observed. The transesterification reaction was successfully scaled up to 50 mL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.