Abstract

Breast cancer is the most common cancer in women and its incidence rates are rapidly increasing in China. Understanding the molecular mechanisms of breast cancer tumorigenesis enables the development of novel therapeutic strategies. SEC61G is a subunit of the endoplasmic reticulum translocon that plays critical roles in various tumors. We aimed to investigate the expression and function of SEC61G in breast cancer. By analyzing The Cancer Genome Atlas breast cancer cohort, we found that SEC61G was highly expressed in breast cancer and predicted poor prognosis of breast cancer patients. Overexpression of SEC61G and its prognostic role was also confirmed in the Nanjing Medical University (NMU) breast cancer cohort. Functionally, we demonstrated that knockdown of SEC61G suppressed breast cancer cell proliferation, migration, invasion, and promoted breast cancer cell apoptosis in vitro. Xenograft breast tumor model revealed that knockdown of SEC61G inhibited breast tumor development in vivo. Furthermore, we demonstrated that SEC61G positively regulated glycolysis in breast cancer cells. Mechanistically, we showed that transcription factor E2F1 directly bound to the promoter of SEC61G and regulated its expression in breast cancer cells. SEC61G overexpression antagonized the effect of E2F1 knockdown in regulating breast cancer cell proliferation, invasion, and apoptosis. Finally, we demonstrated that the E2F1/SEC61G axis regulated glycolysis and chemo-sensitivity of Herceptin in breast cancer cells. Taken together, these results of in vitro and in vivo studies demonstrate that SEC61G promotes breast cancer development and metastasis via modulating glycolysis and is transcriptionally regulated by E2F1, which might be utilized as a promising therapeutic target of breast cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.