Abstract

The exocyst plays a crucial role in the targeting of secretory vesicles to the plasma membrane during exocytosis. It has been shown to be involved in diverse cellular processes including yeast budding. However, the mechanism of the exocyst regulating yeast budding has not been fully elucidated. Here we report a novel interaction between the exocyst component Sec15 and the Ras-family GTPase Rsr1, a master regulator of bud-site-selection system, in the fungus Candida albicans. We present several lines of evidence indicating physical and genetic interaction of Sec15 with Rsr1. In vitro binding assays and co-immunoprecipitation studies showed that Sec15 associated physically with Rsr1. Deletion of RSR1 completely abolished the polarised localisation of Sec15 as well as all the other exocyst components in both yeast and hyphal cells, suggesting a functional interaction between Sec15 and Rsr1. We also show that C. albicans Sec15 interacts directly with the polarity determinant Bem1 and the type V myosin, Myo2. Disruption of the interaction by shutting off SEC15 results in mislocaliztion of Bem1-GFP. These findings highlight the important role of Sec15 in polarised cell growth by providing a direct functional link between bud-site-selection and exocytosis.

Highlights

  • Selection system, providing a direct link between the bud site selection system and exocytosis

  • These results clearly show a severe localisation defect for Bem1-GFP in SEC15 shut off cells, indicating a strong genetic interaction between Sec[15] and Bem[1] in C. albicans

  • The exocyst plays a crucial role in the targeting of secretory vesicles to the plasma membrane during exocytosis

Read more

Summary

Introduction

Selection system, providing a direct link between the bud site selection system and exocytosis. These results clearly show a severe localisation defect for Bem1-GFP in SEC15 shut off cells, indicating a strong genetic interaction between Sec[15] and Bem[1] in C. albicans.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.