Abstract
The employ of phase change materials (PCMs) provides a potential selection for thermal energy storage (TES) and thermal management (TM). The main reasons hinder the application are the low thermal conductivity, leakage and strong rigidity of PCMs. In this paper, a thermal shape memory composite phase change material composed of triblock copolymer (SEBS), paraffin (PA) and expanded graphite (EG) is prepared. The composite phase change materials are characterized by SEM, FTIR, DSC and TGA. The shape stability and thermal shape memory mechanism are studied in detail through rheological analysis. The results show that the prepared composite exhibit superior shape stability and thermal stability. Furthermore, the existence of SEBS can effectively suppress the effect of natural convection and improve the thermal stratification of the composite along the direction of gravity, and the composite material exhibited excellent thermal shape memory property. In addition, the existence of EG can enhance the heat transfer performance of the composite material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.