Abstract

Traction transport of pebbles and cobbles occurs subtidally at current velocities below 0.5ms−1 when seaweed attached to clasts provides additional lift and drag to the clast. In the Juan de Fuca Strait, British Columbia, Canada, the seaweed Cymanthere triplicata commonly attaches to pebbles and provides sufficient additional surface area for tidal currents to drag the clast along the seafloor. Using in situ measurements of current velocities at 13m water depth, the threshold for initiation of motion of a 30mm pebble with attached seaweed is 0.3ms−1. This is approximately one order of magnitude less than the activation velocity for a 30mm pebble without attached seaweed.In addition to kelp-rafted (floated) gravel, seaweed-assisted, benthic gravel transport is possible in marine settings where unidirectional currents (e.g., tidal currents, storm-induced bottom currents) are sufficient to transport pebbles alongshore, and into and across the offshore (below fairweather wave base). If preserved in the rock record, deposits of algal-enhanced gravel deposited via unidirectional, subtidal currents will likely appear as isolated gravel clasts encased in sandstone, reflecting the similar current velocities required to transport these two clast groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.