Abstract

The aim of this study was to examine antibiotic resistance (AR) dissemination in coastal water, considering the contribution of different sources of fecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of fecal contamination: human-derived sewage and seagull feces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin, and amoxicillin were the most frequent. Higher rates of AR were found among seawater and feces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull feces (29 and 32%) were lower than in isolates from seawater (39%). Seawater AR profiles were similar to those from seagull feces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes blaTEM, sul1, sul2, tet(A), and tet(B), were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (blaCTX-M-1 and blaSHV-12) and seagull feces (blaCMY-2). Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull feces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived fecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.

Highlights

  • Fecal contamination in aquatic environments contributes to the spread of human pathogens along with the dissemination of antibiotic-resistant bacteria

  • Considering the different sampling sources distribution among phylogenetic groups was rather similar, except for group B2 isolates that were only detected in sewage (10% of the total number of isolates retrieved from this source) and in seagull feces (4%)

  • The most prevalent antibiotic resistance (AR) was toward streptomycin (83–100%), followed by tetracycline and cephalothin in seawater (48 and 42% respectively), and tetracycline and amoxicillin in the fecal sources (35 and 34% in seagull feces and 23% for both antibiotics in sewage)

Read more

Summary

Introduction

Fecal contamination in aquatic environments contributes to the spread of human pathogens along with the dissemination of antibiotic-resistant bacteria. The resistomes of fecal bacteria, once in environmental settings, contribute with antibiotic resistance (AR) genes to non-resistant indigenous microorganisms (Aminov, 2011; Tacão et al, 2014). Enrichment in AR bacteria is promoted by the presence of antimicrobials or other contaminants in the environment. This facts reinforce the need to identify the sources of antibiotic-resistant bacteria in aquatic environments of human usage (Rosewarne et al, 2010; Gomez-Alvarez et al, 2012)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call