Abstract

In a continuing effort to predict the physicochemical properties of seawater from the properties of single aqueous electrolyte solutions, the pairwise heats of mixing at constant molal ionic strength,I=1.0 ional, have been determined for the six possible pairs of salts from the set (NaCl, Na2SO4, MgCl2, MgSO4) at 30°C. In addition, heats of dilution for two aqueous solutions formed from these salts and havingI=1.0 ional have been determined at 30°C. In order to present the most thermodynamically consistent results, it was found necessary to apply a correction term to the relative apparent equivalent enthalpies given in the literature at 30°C. These correction terms derived from a consideration of published results on heats of dilution at very low concentrations. Further, in order to make predictions for seawater at 25°C, it was deemed desirable to refit existing heat-capacity data. The heats relative apparent equivalent enthalpies for the two mixtures mentioned as well as for seawater. The estimates are based on the theoretical equation of Reilly and Wood for charge-asymmetric mixtures which derives from the work of Friedman. In the most applicable cases, the estimates agree with experimental relative apparent equivalent enthalpies to within 5%. In general, the results substantiate the theoretical equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.