Abstract

Direct measurements of foliar carbon exchange through the growing season in Arctic species are limited, despite the need for accurate estimates of photosynthesis and respiration to characterise carbon cycling in the tundra. We examined seasonal variation in foliar photosynthesis and respiration (measured at 20°C) in two field-grown tundra species, Betula nana L. and Eriophorum vaginatum L., under ambient and long-term warming (LTW) conditions (+5°C), and the relationship of these fluxes to intraseasonal temperature variability. Species and seasonal timing drove most of the variation in photosynthetic parameters (e.g. gross photosynthesis (Agross)), respiration in the dark (Rdark) and light (Rlight), and foliar nitrogen concentration. LTW did not consistently influence fluxes through the season but reduced respiration in both species. Alongside the flatter respiratory response to measurement temperature in LTW leaves, this provided evidence of thermal acclimation. The inhibition of respiration by light increased by ~40%, with Rlight : Rdark values of ~0.8 at leaf out decreasing to ~0.4 after 8 weeks. Though LTW had no effect on inhibition, the cross-taxa seasonal decline in Rlight : Rdark greatly reduced respiratory carbon loss. Values of Rlight : Agross decreased from ~0.3 in both species to ~0.15 (B. nana) and ~0.05 (E. vaginatum), driven by decreases in respiratory rates, as photosynthetic rates remained stable. The influence of short-term temperature variability did not exhibit predictive trends for leaf gas exchange at a common temperature. These results underscore the influence of temperature on foliar carbon cycling, and the importance of respiration in controlling seasonal carbon exchange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.