Abstract

Abstract The seasonal dependence of atmospheric short-term climate (i.e., seasonal to interannual) predictability is studied. This is accomplished by analyzing the output from ensemble integrations of the European Centre for Medium-Range Weather Forecasts model. The integrations use the observed evolution of sea surface temperature (SST) as prescribed boundary forcing. Forced by the interannual variation of SST, the short-term climate predictability of the atmospheric circulation is geographically and seasonally dependent. In general, the predictability is larger in the Tropics than the extratropics and is greater in the Pacific–Atlantic Ocean sector compared to the Indian Ocean–Asian monsoon region. Predictability is also higher in the winter hemisphere than in the summer hemisphere. On average, the weakest predictability in the Northern Hemisphere occurs during the northern autumn. However, it is noted that the 1982/83 strong El Nino event produced stronger atmospheric predictability than the 1988/89 st...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call