Abstract

This study aimed at investigating the characteristics of the wind power resource in the Far North Region of Cameroon (FNR), based on modelling of daily long-term satellite-derived data (2005-2020) and in-situ wind measurements data (1987-2020). Five different reliable statistical indicators assessed the accuracy level for the goodness-of-fit tests of satellite-derived data. The two-parameter Weibull distribution function using the energy factor method described the statistical distribution of wind speed and investigated the characteristics of the wind power resource. Six 10-kW pitch-controlled wind turbines (WT) evaluated the power output, energy and water produced. A 50 m pumping head was considered to estimate seasonal variations of volumetric flow rates and costs of water produced. The results revealed that the wind resource in FNR is suitable only for wind pumping applications. Based on the hydraulic requirements for wind pumps, mechanical wind pumping system can be the most cost-effective option of wind pumping technologies in FNR. However, based on the estimated capacity factors of selected WT, wind electric pumping system can be acceptable for only four out of twenty-one sites in FNR.

Highlights

  • Wind has nowadays become a stable form of power supply and is considered as one of the most cost-effective means for delivering low-carbon energy services, to the most vulnerable segments of the population in numerous developing nations

  • The results revealed that the wind resource in Far North Region of Cameroon (FNR) is suitable only for wind pumping applications

  • The results show that the wind resource in FNR is deemed suitable for wind pumping applications

Read more

Summary

Introduction

Wind has nowadays become a stable form of power supply and is considered as one of the most cost-effective means for delivering low-carbon energy services, to the most vulnerable segments of the population in numerous developing nations. At the end of 2019, global WE generation capacity amounted to 622.7 gigawatts (GW), which represented 25% of renewable generation capacity by energy source. Asia accounted for 49.47% of new capacity in 2019, increasing its WE generation capacity by 29.13 GW to reach 258.32 GW (41.48% of the global total). WE capacity in Europe and North America expanded by 14.02 GW (+31.46%) and 11.48 GW (+19.85%), respectively [3]. Africa accounted for 0.51%, the lowest of new capacity in 2019, increasing its wind energy capacity by only 0.3 GW to reach 5.7 GW (0.93% of the global total). Compared to 2018, capacity growth in Africa and Middle East was somewhat lower than in 2019, but higher in Asia, Europe and North America [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call