Abstract

We present an analysis of the factors which control the seasonal variations of the clear-sky greenhouse effect, based on satellite observations and radiative transfer simulations. The satellite observations include the radiation budget at the top of the atmosphere from the Earth Radiation Budget Experiment and the total column moisture content derived from the Special Sensor Microwave/Imager. The simulations were performed with the SAMSON system described in an earlier paper, using atmospheric temperatures and humidities from operational analyses produced by the European Centre for Medium Range Weather Forecasts. At low latitudes, the magnitude of the clear-sky greenhouse effect is dominated by the strong thermodynamic link between the total column moisture content of the atmosphere and sea surface temperatures, with minimal seasonal variations. In contrast, at middle to high latitudes there are strong seasonal variations, the clear-sky greenhouse effect being largest in winter and smallest in summer. These variations cannot be explained by the seasonal cycle in the total column moisture content, as this is largest in summer and smallest in winter. The variations are controlled instead by the seasonal changes in atmospheric temperatures. The colder atmosphere in winter enhances the temperature differential between the atmosphere and the sea surface, leading to a larger greenhouse effect despite the lower moisture contents. The magnitude of the clear-sky greenhouse effect is thus controlled by atmospheric humidity at low latitudes, but by atmospheric temperature at middle and high latitudes. These controls are illustrated by results from sensitivity experiments with SAMSON and are interpreted in terms of a simple model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call