Abstract

The seasonal variations of refractivity gradients from 104 to 3000 m above ground level in the troposphere layer are presented based on observations from the radiosonde station located in Ngaoundere (13.5°E, 7.3°N), a middle belt savannah region of Cameroon. Six years (2006–2011) of data from in situ measurements made by Agency for the Safety of Air Navigation in Africa and Madagascar (ASECNA) of the temperature, moisture, and pressure are used to determine the surface duct conditions over Ngaoundere region. Each time that a negative gradient from the Abel-retrieved refractivity profiles is seen, it implies the presence of a duct in this study. The occurrence of ducts strongly depends on the local climate and synoptic weather conditions which have an appreciable influence on the refractivity vertical profile, especially the seasonal north–south movement of the Inter Tropical Convergence Zone (ITCZ) which provides wet and dry seasons to the region. Monthly and seasonal variations of ducts were also determined from the measured data. The highest and the lowest occurrence rate of surface ducts were observed during the wet and the dry seasons, respectively. September appears as the month when most of the ducts occur at the rate of at least one duct per day. The median duct thickness and duct strength are high and strong during the wet season, whereas they are low and weak during the dry season. When the data are separated into stable and unstable atmospheric conditions, we noticed that surface duct characteristics show some seasonal differences. Surface ducts are found to be more frequent in a stable atmosphere than in an unstable atmosphere. Statistical results are discussed alongside with local meteorological conditions and weather systems affecting the town of Ngaoundere. Besides, comments are made on their prospective significance in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.