Abstract

Seasonal variations of rainfall microphysics in East China are investigated using data from the observations of a two-dimensional video disdrometer and a vertically pointing micro rain radar. The precipitation and rain drop size distribution (DSD) characteristics are revealed for different rain types and seasons. Summer rainfall is dominated by convective rain, while during the other seasons the contribution of stratiform rain to rainfall amount is equal to or even larger than that of convective rain. The mean mass-weighted diameter versus the generalized intercept parameter pairs of convective rain are plotted roughly around the “maritime” cluster, indicating a maritime nature of convective precipitation throughout the year in East China. The localized rainfall estimators, i.e., rainfall kinetic energy–rain rate, shape–slope, and radar reflectivity–rain rate relations are further derived. DSD variability is believed to be a major source of diversity of the aforementioned derived estimators. These newly derived relations would certainly improve the accuracy of rainfall kinetic energy estimation, DSD retrieval, and quantitative precipitation estimation in this specific region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call