Abstract

Secondary organic aerosol (SOA) substantially contributes to particulate organic matter affecting the regional and global air quality and the climate. Total suspended particle (TSP) samples were collected in October 2009 to February 2012 on a weekly basis at Cape Hedo, Okinawa, Japan in the western North Pacific Rim, an outflow region of Asian aerosols and precursors. The TSP samples were analyzed for SOA tracers derived from biogenic volatile organic compounds (BVOCs). Total isoprene-SOA tracers showed a maximum in summer (2.12 ± 2.02 ng m−3) and minimum in winter (1.16 ± 0.92 ng m−3). This seasonality is mainly controlled by isoprene emission from the local subtropical forest, followed by regional scale emission of isoprene from the surrounding seas and long-range transported air masses. Total monoterpene-SOA tracers peaked in March (3.38 ± 2.03 ng m−3) followed by October (2.95 ± 1.62 ng m−3). In contrast, sesquiterpene-SOA tracer, β-caryophyllinic acid, showed winter maximum (1.63 ± 1.18 ng m−3) and summer minimum (0.20 ± 0.46 ng m−3). The variations of the monoterpene- and sesquiterpene-SOA tracers are likely related to the continental outflow of oxidation products of BVOC. Using a tracer-based method, we estimated the total biogenic SOC of 0.25–157 ng m−3 (mean 35.8 ng m−3) that accounts for 0.01–9.8% (mean 2.7%) of aerosol organic carbon. Our study suggests that SOA formation in the western North Pacific Rim is involved with not only local but also regional emissions followed by long-range atmospheric transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.