Abstract

The uncertainty in the quantification of aerosol properties such as concentration, size, and composition, spatially and temporally makes regional studies important. Therefore, this study presents seasonal variations of aerosol optical properties over Ilorin (8&#17632'N, 4&#17634'E), Nigeria. Long-term (1998-2013) records of aerosol optical depth (AOD) and angstrom exponent α, from ground-based Aerosol Robotic Network (AERONET) are used to study the seasonal variability, characteristics and types of aerosol. The study showed that seasonal variations (Harmattan and Summer) result in different aerosol concentration, characteristics, and types. The magnitude and sensitivity of AOD to wavelength are found low in Summer with significant increase during Saharan dust transport season (Harmattan). The average mean AODs are 0.73 ± 0.50, 0.97 ± 0.52 and 0.46 ± 0.29 with corresponding mean angstrom of 0.66 ± 0.36, 0.68 ± 0.34, and 0.64 ± 0.37 for the entire period, Harmattan and Summer seasons. High frequency of occurrence of angstrom exponent below 1 (78% and 81%) which were observed during Harmattan and Summer indicates that the particles are generally coarse in mode. The results revealed that for both Harmattan and Summer seasons, the dominant aerosol was dust (DA) with frequency of occurrence of 82% and 79%. However, mixed aerosol (MIXA) (14.4%) is the second dominant case during Harmattan while in Summer maritime aerosol (MA) (9.1%) associated with transport due to southwesterly trade wind is the second dominant aerosol. This conclusion is supported by size distribution data for the study site which showed that large volume of aerosol particle size are enclosed in largely coarse mode range in all seasons. A 7-day back trajectory seasonal frequency plot sourced from the Hysplit Single Particles Lagrangian Integrated Trajectory model (Hysplit_4 model) shows that dust are transported from the Sahara during north-easterly trade wind flow while the observed marine aerosols are conveyed by the southwesterly trade wind influences to the study site.

Highlights

  • Aerosols are tiny sized particles that are suspended in the atmosphere [1]

  • The study shows that seasonal variations (Harmattan and Summer) result in different aerosol concentration, characteristics and dominant types

  • Low aerosol optical depth (AOD) values and sensitivity to wavelength occur in the Summer and increase significantly during Saharan dust transport season (Harmattan)

Read more

Summary

Introduction

Aerosols are tiny (micro and submicron) sized particles (solid or liquid) that are suspended in the atmosphere [1]. Aerosols are injected into the atmosphere from both natural and anthropogenic sources [2] such as freezing of water vapor, condensation, dust storm, biomass burning, volcanic eruption, digging of soil through farming and irrigation, forest fire, vegetation, secondary inorganic salts, and sea spray. They are distributed in the atmosphere by turbulence and regional/global circulation (i.e. movement of air masses). It depends upon factors such as location, seasons, atmospheric conditions, annual and diurnal cycles and the presence of local sources

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call