Abstract

Seasonal variations in pore water and solid phase geochemistry were investigated in urbanized minerotrophic peat sediments located in southwestern Michigan, USA. Sediment pore waters were collected anaerobically, using pore water equilibrators with dialysis membranes (“peepers”) and analyzed for pH, alkalinity, dissolved ΣPO4 −3, ΣNH4 +, ΣS−2, SO4 −2, Fe+3, Fe+2, and Mn+2 at 1-2 cm intervals to a depth of 50 cm. Cores collected adjacent to the peepers during all four seasons were analyzed for reactive solid phase Fe according to extraction methods proposed by Kostka and Luther (1994). The association of Fe and trace metals (Mn, Pb, Zn, Cu, Cr, Co, Cd, U) with operationally defined solid phase fractions (carbonates, iron and manganese oxides, sulfides/organics and residual) was assessed for cores extracted during winter and spring using extraction methods proposed by Tessier et al. (1979, 1982). Pore water Fe and S data demonstrate a clear seasonal variation in redox stratification of these sediments. The redox stratification becomes more compressed in spring and summer, with relatively more reducing conditions closer to the sediment water interface (SWI), and less reducing conditions near the SWI in fall and winter. In the upper 10–15 cm of sediment, the pool of ascorbate extractable Fe, thought to be indicative of reactive Fe(III) oxides, diminishes during spring and summer, in agreement with seasonal changes in redox stratification indicated by the pore water data. Tessier extractions indicate that the total extractable quantity of all metals analyzed in this study decrease with depth, and that the majority of the non-residual Fe, Pb, Zn, Cu, Cr, Co, Cd, and U is typically associated with the sulfide/organic fraction of the sediments at all depths. Non-residual Mn, in contrast, is significantly associated with carbonates in the upper 15–25 cm of the sediment, and predominantly associated with the sulfide/organic fraction only in deeper sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.