Abstract

Large amounts of dissolved organic matter (DOM) are stored in mountain glaciers. However, few researches have analysed the optical characteristics of DOM in surface waters fed by mountain glaciers and their seasonal variations. In a pond fed by a glacier we observed simultaneous decreases in the dissolved organic carbon, and increases in both absorbance at 254 nm and specific absorption coefficient (SUVA254) during the ice-free season 2015. This behaviour differs from the typical behaviour of lake/pond water in summer, and from the trends observed in a nearby pond not fed by a glacier. The trends of DOM properties, main ions and water stable isotopes at the glacier-fed pond could be attributed to transient modifications of the subglacial hydrological system. Flushing of previously isolated pools of subglacially stored water, containing terrestrial DOM derived from glacially-overridden soil and vegetation, would be driven by intense rainfall events during the melting season. These findings suggest that heavy rainfall events during the melting season have the capability to transiently modify the characteristics of DOM in a glacial pond. These events may be further exacerbated in the future, as summer rainfall events in the Alps are predicted to increase due to global warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call