Abstract

Light scattering data collected during two periods of intensive sampling in New York City (one during summer months and one during winter months) are discussed and analyzed for diurnal patterns, their relationship to pollutant emission sources, meteorological parameters, and the size distribution and chemical composition of the ambient aerosol. The lack of a diurnal pattern for light scattering in summer in combination with a strong positive association with ozone and wind direction dependency suggests that in summer the transport of an aged aerosol in photochemically rich air masses rather than local emissions of primary pollutants is largely responsible for the observed levels of light scattering in New York City. Winter levels of light scattering observed in New York City, while approx. 50% lower than summer levels, were much less dependant on wind direction and closely related to pollutant emissions from local sources. This suggests that locally generated aerosol dominates light scattering in the winter. Particles 0.1–1.3 μm in diameter were strongly correlated with light scattering in New York City during both summer and winter periods. However, a given volume of aerosol between 0.1 and 1.3 μm scattered more light in summer than in winter, indicating the fresher nature of the winter aerosol. Variance in dry particulate light scattering was found to principally account for light extinction variance (calculated from airport visibility observations) in summer and winter. Sulfate aerosol was strongly correlated with light scattering during both summer and winter periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.