Abstract
Spatial and temporal scales of sea surface temperature (SST) variations in the Kuroshio region have been investigated using a satellite-based one-year merged SST product. Targeting short-term variations with temporal scales of less than a year, decorrelation scales, which are defined as the e-folding scale of SST variability, have been derived as functions of regional positions and calendar months. We assumed that the autocorrelation function of SST has anisotropic Gaussian characteristics in the space-time domain. Resultant spatial and temporal decorrelation scales range from 1 to 3° and 2 to 3 days, respectively. They are strongly inhomogeneous, anisotropic and time-dependent. These characteristics are attributed to the oceanic and atmospheric disturbances. Spatial decorrelation scales are determined mainly by strong atmospheric forcing in the study region. In the area with dominant atmospheric forcing, the spatial scales are larger than those in the other regions. Those in the regions with dynamical oceanographic disturbances are as small as 1°. Signal-to-noise ratios are also large where the atmospheric forcing is strong, while they are small where the oceanic signals are active.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.