Abstract

The discharge of inadequately treated wastewater effluent presents a major threat to the aquatic environment and public health worldwide. As a water-scarce country, South Africa is facing an alarming situation since most of its wastewater discharges are not meeting the permissible limit. The aim of this study was to assess the physicochemical quality of treated wastewater effluents and their impact on receiving water bodies. During the study period, pH, temperature, free chlorine residue (Cl(-)), dissolved oxygen (DO), nitrate (NO3 (-1)), orthophosphate (PO4 (-3)) and chemical oxygen demand (COD) were measured in order to ascertain whether the selected wastewater systems in Sedibeng and Soshanguve complied with the South African and World Health Organization standards during wet and dry seasons. These parameters were analysed for samples collected from raw wastewater influent, treated wastewater effluent and receiving water bodies. The study was carried out between August 2011 and May 2012, and samples were collected on a weekly basis during both seasons. The physicochemical quality of effluents did not comply with the regulatory limits set by South Africa in terms of pH in Meyerton, Rietgat and Sandspruit (pH 7.6 to 8.1); free chlorine in Sandspruit (0.27 ± 0.05 mg/L); nitrate in Leeuwkuil and Rietgat (2.1 and 3.8 mg/L, respectively) during the wet season; orthophosphate in Meyerton during the wet season and in Sandspruit during the dry season (1.3 mg PO4 (-3) as P/L and 1.1 mg PO4 (-3) as P/L, respectively); and chemical oxygen demand in Rietgat during the dry season and in Sandspruit during the wet season (75.5 and 35 mg/L, respectively). Furthermore, the quality of the receiving water bodies did not comply with the South African standards recommended for pH, chemical oxygen demand and orthophosphate and DO (5 mg/L) in Rietgat during the wet season. The geometric mean of the water quality index values ranged between 32.4 and 36.9 for the effluent samples and between 38.1 and 65.7 for the receiving water bodies. These findings revealed that the receiving water bodies were classified as having "poor" quality status, except Leeuwkuil receiving water body (Vaal River) and Sandspruit upstream (Sandspruit stream). The dry season showed a relatively lower water quality index. This situation might be attributed to the higher amount of organic matter and lower microbial activities in the receiving water bodies. This study suggests that wastewater effluents and receiving water systems should be monitored regularly to ensure best practices with regard to nutrient treatment and discharge of wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.