Abstract

The divergence of the surface heat flux in the Gulf of California is driven by the exchange of waters with the Pacific Ocean [Castro et al., 1994]. To estimate these exchanges, geostrophic velocities and heat fluxes were computed from nine sections of closely spaced conductivity‐temperature‐depth stations across the entrance to the Gulf of California between 1992 and 1999. The mean geostrophic velocity was composed of two alternating cores of inflow and outflow. The two cores that were adjacent to either coast were broader and contained the highest inflow (0.40 m/s) and outflow (−0.25 m/s) velocities, supporting the general idea of inflow along Sinaloa and outflow along Baja California (BC). During winter and spring the baroclinic outflow usually occurred near BC, and the baroclinic inflow occurred either through the center of the section and/or along the Sinaloa coast. Both inflow and outflow cores were ∼45 km wide and extended deeper than 700 dbar. Summer and fall showed a more complex pattern, with alternating cores of inflow and outflow but with inflow along Sinaloa on all cruises. During May the inflow was mainly in the center of the section, while outflow was concentrated along BC. The heat transport associated with the geostrophic flow was calculated and compared with estimates derived from surface heat budgets for the gulf [Castro et al., 1994]. Both the geostrophic flow and heat transport exhibited (for the first empirical orthagonal function mode) a strong seasonal signal with the maximum amplitude in May and the minimum amplitude in late October. A seasonal fit to the net heat transport had an amplitude of 50 × 1012 W and phase of 133 days, in good agreement with other authors, further validating the geostrophic velocity estimates. The heat added to (subtracted from) the Pacific Ocean accelerates (decelerates) alongshore currents and appears to propagate ∼10° westward as a Rossby wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.