Abstract

Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD+ for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree.

Highlights

  • Eucalyptus is the most widely planted hardwood genus in the world

  • We found significant changes in the metabolism of the cambial zone, suggesting that during summer, pyruvate produced by glycolysis is primarily diverted to ethanolic fermentation, to regenerate NAD+ and maintain glycolysis producing ATP

  • As a first step to understand the molecular mechanisms underlying the seasonal reorganization in the cambial zone, we examined the transcriptional pattern of 26 genes (Figure 1 and Supplementary Table 1) related to specific pathways of plant primary metabolism: glycolysis, ethanolic fermentation, TCA cycle and carbon fixation

Read more

Summary

Introduction

Eucalyptus is the most widely planted hardwood genus in the world. The trees are valued for their fast growth, high adaptability to different climatic conditions and multiple uses of their wood (e.g., pulp and paper industries, charcoal-based steel, wood panels and potential feedstock for lignocellulosic biofuels; Albaugh et al, 2013; Nogueira et al, 2015). Perennial woody plants from temperate zones have developed mechanisms, that undergo seasonal cycles of activity and dormancy, which are collectively known as annual periodicity (Ko et al, 2011; Begum et al, 2013). This periodicity plays an important role in the formation of wood and reflects the environmental adaptation of woody species. Despite the influence that seasonality has on cambial activity, molecular studies regarding the changes that occur in these tissues have only been carried out in species from temperate zones, emphasizing cold acclimation (Schrader et al, 2004; Yang et al, 2004; Gricar and Cufar, 2008; Li et al, 2010; Ko et al, 2011; Galindo-González et al, 2012)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call