Abstract

The role of turfgrasses in C and N cycling in the southeastern U.S. has not been well documented. The objectives of this research were to determine the characterization of chemical quality, clipping decomposition rates, and C and N release from warm- and cool-season turfgrasses. The study was conducted for 46 weeks in 2012 in Auburn, AL. Four warm season turfgrasses were used included (bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy], centipedegrass (Eremochloa ophiuroides (Munro) Hack), St. Augustinegrass (Stenotaphrum secundatum (Walter) Kuntze), zoysiagrass (Zoysia japonica Steud.), and one cool season turfgrass (tall fescue (Festuca arundinacea Schreb)). Litter was placed into nylon bags at an oven dry rate of 3.6 Mg?ha?1. Litter bags were retrieved after 0, 1, 2, 4, 8, 16, 24, 32, and 46 weeks, and analyzed for total C and N. A double exponential decay model was used to describe mass, C, and N loss. Results indicated that tall fescue decomposition occurred rapidly compared to warm season turfgrasses. Litter mass loss measured after 46 weeks was determined to be 61.7%, 73.7%, 72.2%, 86.8%, and 45.4% in bermudagrass, centipedegrass, St. Augustinegrass, tall fescue, and zoysiagrass respectively. Zoysiagrass litter had a higher lignin concentration, while tall fescue had the lowest lignin. Over 46 weeks’ release of C was in the order: zoysiagrass > bermudagrass = centipedegrass = St. Augustinegrass > tall fescue, and release of N was in the order zoysiagrass > centipedegrass > bermudagrass = St. Augustinegrass > tall fescue. Our study concluded that, zosiagrass is a better choice for home lawns.

Highlights

  • Understanding litter decomposition process in a given ecosystem is vital due to its effect on greenhouse gas concentration and biogeochemical cycling in terrestrial ecosystems

  • The objectives of this research were to determine the characterization of chemical quality, clipping decomposition rates, and C and N release from warmand cool-season turfgrasses

  • Results indicated that tall fescue decomposition occurred rapidly compared to warm season turfgrasses

Read more

Summary

Introduction

Understanding litter decomposition process in a given ecosystem is vital due to its effect on greenhouse gas concentration and biogeochemical cycling in terrestrial ecosystems. The quality and type of litter material influence soil organic matter content [5]. Organic matter with higher C:N or lignin:N ratios decomposes slower, a function of lower N mineralization rates and increased N immobilization in microbial biomass [6]. The ability of soil microorganisms to decompose and/or mineralize organic matter depends on the chemical structure of the C compounds [7]. Complex C compounds such as lignin can retard litter decomposition. The composition of plant residues, in particular C, N, and lignin concentrations, determines the rate and extent of decomposition of such residues. The concentration of lignin alone or the lignin:N content can be used as an indicator of decomposition rates [8] [9] [10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.