Abstract

We examined drivers of water quality during 2007–2013 in a region of Lake Ontario influenced by various anthropogenic inputs and natural influences. Nutrient concentrations generally declined from shoreline to offshore, with mean concentrations approaching background after 1 km from shore. N species were an exception to this overall pattern, often with higher concentrations coincident with a mid-nearshore Water Pollution Control Plant outfall (WPCPo). The WPCPo, however, did not appear to be a major contributor to shoreline total phosphorus (TP) or ammonia + ammonium. Shoreline TP variability increased in dry years, while E. coli and conductivity variability increased in wet years. The influence of environmental drivers on water quality differed seasonally. In summer, cross-shore winds causing resuspension appeared to be drivers of elevated nearshore TP and suspended solids (SS), while precipitation, light, and water column stability were related to E. coli. Summer biological activity was evident in higher shoreline total Kjeldhal N contributions and lower NO3 + NO2 and dissolved inorganic N. In fall and spring, TP, SS, and conductivity were elevated within 400 m of the shore, suggesting tributary inputs were an important P delivery mechanism to the nearshore in addition to spring resuspension events. Fall, however, represented a transitional period representing a shift from drivers dominant in summer to those in spring. The analytical approach used here reveals generalizable patterns in nearshore water quality and their drivers and may be applicable to other regions where there is a confluence of varying drivers of water quality to a nearshore region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call